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GENERAL TECHNIQUE FOR THE SOLUTION OF NONHOMOGENEOUS LINEAR PROBLEMS
FOR SYMMETRIC MECHANICAL SYSTEMS®

M.L. BURYSHKIN

A technique for simplifying the computation of the stress-deformed state of a linear
symmetric mechanical system affected by nonsymmetric loads is studied. A nonhomo-
geneous equation formulated in general form encompasses a variety of problems in the
mechanics of deformed body. The statement of the problem, individual results, and
stages of the proposed technique are illustrated by discrete methods and the two-
dimensional problem of the theory of elasticity.

1. Abstract statement. Let us consider an elasto-linear mechanical system Sin a
region Q and formulate a nonhomogeneous problem for it which reduces to the solution of the
operator equation

Av=v, uesl, vel, (1.1)

Here L, and L, are given spaces of functions defined on £, and 4 is a linear operator
defined from L, into L,. The function u describes the stress-deformed state of the system S,
while the function v is the specified loads and displacements. For the sake of brevity, u and
v will be called the state and load functions, respectively.

Usually, equation (1.1) is not studied directly, but is instead replaced by a formally
defined resolvent equation

BU =V, UsL, Vel (1.2)

where L,’and L, are spaces of formalized state and load functions, and B is a linear operator
defined from [," into L,’. Here we have the relations

uw=RBU, V=2Bw (1.3)

We will understand by B, and B, well-known linear operators defined from L/ into I, and
L, into L, . Since elements from the null-spaces of the operators A, B, and B, are not of
interest in most problems in the mechanics of deformed bodies, their selection will henceforth
depend upon considerations of compactness in the presentation.

Let us consider three examples of this formalization which are widespread and which we
will study below.

Discrete methods. 1In place of 0, we will use a discrete (net-point) region. The
operator B, replaces the load by forces concentrated at the nodes of the net, and replace the
function v by the vector V whose components describe the specified forces and variables at the
nodes.

The operator B; is responsible for a gradual transition from the components of the vector
U to values of the components of the stress-deformed state at the network nodes and their
interpolation at other points of the region Q.

The finite-dimensional spaces L, and L,/ merge into a single space L. The selection
of the coordinate axes and the unknowns by the calculator essentially defines a basis in [Z%.
The operator B is replaced by a matrix corresponding to it in the spaces and the resolvent
equation (1.2), by a system of linear algebraic equations.

Plane problem of elasticity theory for an isotropic medium /1/. The planein
which the region f is located is assumed to be the complex plane, and z=z+4 iy is the affix
of points with coordinates z and y. In place of (1.2) we have

K (to) + Ko [t00" (tp) + 9 () = fotp) (p=1,2,...,No) (L.4)
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The solution of nonhomogeneous linear problems 637

where KX, and X, are coefficients that depend upon the boundary conditions; N, is guantity of
paths forming the boundary of , p is number of path; # is a point on p-th path; and ¢ () and
Y (z) are the Kolosov- Muskhelishvili complex potentials analytic in Q. The abstract concepts
introduced above here assume the following meaning: U = {¢ (2}, ()}, V= {fp (tp)}g“:l. The operators
B, B, and B, are described by equations (l.4), the relation between the complex potentials and
the components of the stress-deformed state, and the relation between the load and functions

fr (tp) , respectively.

Plane problem for anisotropic medium /2,3/. The formalization applied here is
similar to the above. The equations

2Re [Ky e Wy (tpy) + K Wa lpll = for (1) (0 =1,2,.. ., Ny r=1,2) (1.5)

are the resclvent eguations, where K (j,r=1,2) are coefficients that depend upon the boundary

conditions
H=zbuy (=12 (1.6)

W;(z;) are the Lekhnitskii complex potentials which are analytic in the region Q; and both
; and #p; are obtained from R and ¢ by the transformation (1.6). Here

U= Wy (1), Walz)), V= {fn, fm)g;l

2. Symmetry of mechanical systems /4/. A motion in space in which a system §
reaches a position indistinguishable from its initials position is said to be an element of
symmetry of the system. The elements include a turn C, (m=0,1,,,.,n —1) about an n-th
order axis, a reflection @ in some plane, a translation (parallel motion) Tramams (M, My,
my = 0, =1, &2, ...) by a vector m,a, - m.a, + msag, where a,, 8 and a, are the basic vectors,

a trivial motion e = Cy = T, and so on. For these elements of symmetry, we introduce the opera-
tion of multiplication, taking their composition as a product. Then the set & of elements of
symmetry is a group.

A mechanical system § with symmetry group G may be partitioned into identical parts, or
elementary cells, such that because of the effect of some nontrivial element ge @, each of
the cells is made to move, and combine with some other cell. These parts may be conveniently
"enumerated” by means of the symmetry elements. We fix some cell S° and call it the funda~
mental cell, while the cell obtained from S§°by the motion ge& G is denoted 8¢, i.e., 8% =
gS°. We partition this region Q into cells Qf{g=G) assuming that cell Sf is in §f,

The values of the components of the stress-deformed state and the loads described for the
functions u and v depend upon the system of coordinate axes. In the case of a symmetric con-
struction, we will use an invariant system, which is understood to consist in the introduc—
tion into each cell Qf of @ a local frame of reference wf = go® obtained from @°of the funda-
mental cell by the motion g,

We alter the construction § by an element of symmetry ¢g. 1In this case the stress-de-
formed state at any fixed point of the construction remains invariant, though the point it self
moves relative to region Q.We let z and gz denote points in § with which the given point of the
construction coincides with before and after the motion. The stress-deformed state of the
construction g§ is described by the function u, whose values at the point gz &= € is equal
(in an invariant frame of reference) to the value of u at a point 2z, i.e., ug {gz) = u (z) or
ug {2) = u {g7'z) where g~' is the motion inverse to the element g,

We introduce an abstract rule for the effect of the element g& ( on any function F de-
fined on Q, assuming that the function gF = F, as a result of this operation, such that

Fgl(a) = F(g72) (2.1)
Let us stress the mechanical interpretation of rule (2.1): gu and gv are functions of the
state and load in the construction gS . Such an interpretation is convenient for explaining

the basic properties of a nonhomogeneous problem caused by the symmetry of the mechanical
system S.

Property 1. 1f s Live L), then gucs L, (gv = Ly).

In fact, the spaces L, and gL, of the state functions S and g§ coincide because of the
"indistinguishability”™ of the latter. Moreover, the eguation dug = v; is satisfied, along
with (1.1). Hence:

Property 2. Ag=ygd.
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3. Generalized symmetry problems. The symmetry properties functions defined on a
region Q with symmetry group G are highly varied. They may be described with maximal complet-
eness and meaningfulness by means of the special apparatus of irreducible representations of
groups /4/.

By an 7Myy-dimensional irreducible representation Ty of a group G we will understand
a set of given unitary matrices Tk (g) (¢ = G) of order my, that possess a number of special
properties. Any symmetry group has its own, known set of irreducible representations defined
in advance. The irreducible representations Twv of a group G may be distinguished by two in-
dices: a vector index k and a scalar index v, and k=10 for groups with a finite number of
elements. The identity representation only 1t,,, such that mg ==1 and 7, (¢) == {, is the simplest
of the irreducible representations.

Every representation Tk, describes the symmetry properties of some set consisting of my
functions Fiy (p = 1,2, ... M) which may be transformed according to this representation. The
latter signifies that any (u-th) function in the set satisfies the conditions

'rnkfv
ng\"p.: E_‘ Tkv.‘)ll(g)Fk\‘lJ) VgEG (3.1)

=1

where Tyvwpu (g) is the pp-th element of the matrix  Tuy (8).
We write down the property (3.l1) at some point z & Qf, and also bear in mind equality (2.1)
and the fact that the matrices 7Tiy (g) are unitary, thereby obtaining

Mgy
Fkvu(gz)z' Z Tkvup(g)Fkvp(Z), VgEG, Vze Q° (3.2)
o=t

From (3.2) it follows that the function Fiy is uniquely defined by classifying all the
functions Fyy (p = 1,2, ..., M) on the cell Q° of region .

If the load function in (l.1) occurs in the set transformed by an irreducible represent-
ation of group G, the corresponding nonhomogeneous problem will be called a dgeneralized
symmetry problem. By condition (3.1), its solution will always be accompanied by simplifica-
tions whose nature will be discussed below. Since a symmetric (cyclic, periodic, etc.) load
is transformed by the representation 1), the ordinary symmetry problem is a particular case
of the generalized problem.

4, Simplifications in the generalized symmetric problem. We continue the list
of symmetry properties of nonhomogeneous problem.

Property 3. A state function may be transformed by a representation Ty, of a group
G as the p-th function in a set,it is necessary and sufficient that the load function is
transformed in the same way.

Let us prove, for example, necessity. For this purpose, we assume that the function uy,
occurs in the set of functions u, (p=1,2,..., m,), transformed by the representation 7, and
introduce the function v, = Ay, We operate with the element g=¢& on both sides of the
equality v, = Au,,, and also bear in mind property 2 and relation (3.1), obtaining the required
result:

N

MKy My
gv, = Ay, = Ay, = A D) Ty (8) g = ) Tiwpy (8) ¥
p=1 p=1

Property 4. 1If the formalized functions Uy (Viwp) corresponding the functions ukw (Vkvp)
are written in an invariant frame of reference, they also can be transformed by the represent-
ation  Tkv.

Because of our mechanical interpretation of an effect of a motion g on a function, gukw
and gV, must be understood as the ordinary formalized load function of the construction g§.
Consequently, gViy = B, (gVxw), and, based on (3.1), we have

Mgy Mgy

8V kvu = Bb (gVrvy) = Bs 2, Tvon (8) Vivp = > Tevop (8) Vo
p=1 p=1

In proving the remaining parts of properties 3 and 4, arbitrary functions of the null-
spaces of the operators A and B, must be set equal zero.
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Property 5. All possible formalized functions Uy, (Viy) from the subspace L;kqu
L) (Lywa C Ly).

This property, which follows from the linearity of the operators g, B, and B;, may be
used to establish the isomorphic correspondences

Ukvu > U(kV): Vkvu. o Y (4.1)

between the p -th state (load) functions transformed by the representation Txy and the elements
Utkw (V&) of the given spaces L&V (L&),

Basic isomorphism. If Fis a function defined on region Q,we will understand by F],
the function defined on the cell Qf by means of the equality

Fl.@)=F(@), VieQ (4.2)

We consider the spaces L,k and L%V formed by all possible sets

U(kv)=(Ukvp |e)¢1>n=kf’ V(kV)=(V"V°|”}:Jn:¥ (4.3)

By virtue of expressions (3.2) and property 4, these sets are isomorphic to the subspaces
L;kvn and L;kw,. Thus correspondence (4.1) are established between the elements that satisfy
condition (4.3).

In the case of multiply connected regions £, it is sometimes convenient to use a modi-
fication of the basic isomorphism. This isomorphism essentially indicates that a formalized
state function in a number of generalized symmetry problems may be expressed in terms of the
sets UM (n=1,2,...,m,) of certain functions defined on the exterior of the basic bounding
surface (contour). Then the space with elements

UV — (U(n)}:"‘i\{
may be taken as the L&V,

Isotropic medium. We will understand by U™ the set of the two functions O™ (;) and
¥ (;) analytic on the exterior of the basic contour. A one-to-one relation between the
Kolosov ~Muskhelishvili potentials of the generalized symmetry problem and the functions @™ (z),
YW G)ym=1,2,... m,,) are established by special relations /5/.

Orthotropic medium. Using a previously presented method /5/ and property 3, the com-
plex Lekhnitskii potentials in the generalized symmetry problem may be expressed by means of
functions W;(z;) analytic on the exterior of the basic contour of region Q;:

N N 1 Mkv
IijvM(zj)=1£i_r’I; 2 2 Z 2 (— l)m{rkw.m(Tnnm.cm)x (4.4)

mMy=0 My=0 m=0 N=1

W (=)™ (2 = A )]+ Ty TonamaCn® W L= )™ (55 — A )

Amyg = My + maagy + By (magy + myag) (w=1, 2, ..., m.; j =1, 2)

where C,(m=0,1) is a rotation about the origin by an angle mn; 8, a reflection about the axis
zy py(j = 1,2) the Lekhnitskii complex parameters; and a, and a.p(r =1,2) projections of the
vector a, onto the z- and y-axes. In the right side of relations (4.4) we have retained
terms that correspond to elements ge=G.

Obviously U™ = (W, (z), W,™ (z,)}.

Property 6. Under the fixed isomorphisms (4.1), the generalized symmetry problem re-
duces to the solution of the equation

B&O)[T(kv) = Jkv) (4.5}
where the operator B is determined by the correspondence
BONU) s BU gy (U < Upy) (4.6)

The transition from equation (1.2) to (2.5) constitutes an abstract introduction of
simplifications into the solution of the generalized symmetry problem.

Discrete methods. We will use the basic isomorphism as condition (4.1). The dimension
of the finite-dimensional space LV = [*V) = [} j5 much less than the dimension of L’. Thus,
equation (4.5) reduces to a system of low-order algebraic equations. The matrix of this
system corresponding to the operator B is constructed in Sect.6.
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’ Plane problem for isotropic medium. wWe apply the basic isomorphism to the space
Lywn 1.e., we set vV = (@ (t)}:,'i_l‘l", where t=1¢ is a point on the basic contour, and 10 (1)
is the right side of the corresponding eguation (1.4) written for the load Vivp + The req'uired
potentials g, (z) and ¥, (), which are uniquely defined by the functions Y () may be found
from the boundary conditions imposed on the basic contour, generated for each of the loads
L‘k\'p

K@iy () + Ky [t @pyp (0 By O] = () (p=1,2,.. ., my,) (4.7

We apply the modified isomorphism to the formalized state functions and substitute pre-
ious expressions /5/ that relate the potentials ¢y, (2) and y,,, (s to the functions ®™(;) and
v™W () (n=1,2,...,m,), in (4.7), obtaining a system of equations relative to ®™ () and wiM (),
This system is a concrete form of equation (4.5) in our problem and describes the correspond-
ing operator BV,

Plane problem for orthotropic medium. The construction of the operator B*Y i.e.,

the system of equations that determines the functions W;W(z) (n=1,2,...,my; j=1, 2) in terms
of the functions 7 () (p=1,2,..., my;r=1,2),is realized by substituting expressions (4.4) in the
equations

2Re [K 1, Wkyp (10) + Ko Wy )] = £ () (p=1,2, .., m; r=1,2) (4.8)

Remark. In the systems (4.7) and (4.8), we have used the boundary conditions only on
the basic contour TI. Let us now consider the contour T¢€ = gIe, For this purpose, the boundary
conditions in the generalized symmetry problem have the form

(BUyy J(18) = Vi, (), Vg6, ViE=TE (4.9)

Since BU,,, € Lyy, using property 4, equality (3.2) and the self-evident relation # = g,
we obtain expression (4.9) in the form

Mgy My
pzl Tivpp € (BUyp) () = ) Tieypo (€) Vigyo (1) (4.10)
= o=1

The equations (BU,,)(t) = Vi, ®e=12...m,), constitute boundary conditions of the type

(4.7) and (4.8), so that after they are solved, equalities (4.10) and, consdequently, the
boundary condition (4.9), will be satisfied automatically.

5. General technique. These simplifications of generalized symmetry problems may be
used also for arbitrary loading of a symmetric mechanical system. In fact, practically any
load in the construction S with symmetry group G may be represented in the form of a combina-
tion of components that may be transformed by means of irreducible representations of group G
/6,7/, and because of linearity, the initial problem may be decomposed into several generaliz-
ed symmetry problems.

This technique of studying a nonhomogeneous problem for a symmetric mechanical system

consists in three stages: (a) decomposition of the load into components that may be trans-
formed by means of irreducible representations of the symmetry group; (b) solution of equa-
tions (4.5) for the corresponding generalized symmetry problems; (c) superposition of the

obtained results.

If we wish to apply this technique to any new class of problems, it becomes necessary to
investigate the structure of the spaces Likvu and L;k‘,ll and to construct the particular form of
the operator B®Y). The solutions presented above of such problems for the plane problem of
elasticity theory of isotropic and orthotropic media may serve as illustration here. The
principle used to construct the operator B%¥ is also convenient for many other problems in
the theory of thin and thick, densely perforated plates, shells, etc. A specific approach to
the solution of these problems for the case of discrete methods may be found in Sect.6.

In those classes of problems for which necessary isomorphisms and the particular form of
the operator B*Y have already been established, our technique may be used to greatly reduce
the number of interdependent resolvent equations and, consequently, the volume of the computa-
tions. A decrease in the number of equations can be seen in all the examples we have presented,
bearing in mind that the quantity mky is very small by comparison with Ny, the number of cells
in the mechanical system. In these examples, we may verify the following estimate of the ef-
ficiency of our computation technique: the volume of computations necessary for solving a gen-
eralized symmetric problem may be reduced more than (N,/myy)® times.
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As a rule, the solution of equation (4.5) may be carried out by methods suitable for an
ordinary symmetric loading.

6. Discrete methods. It is necessary that the network possess the same symmetry group
G as the construction S; we enumerate the nodes of the cell Q' from 1 to N (number of nodes
in cell). If np is the number of degrees of freedom of node 2, =Q° (p=1,2,..., N), then
Udl,p, g (t=1,2,...,n,) is the t-th component of the vector U at the node gz, = Q¢ We shall
assume that the components U (¢, p,e> and U {t, p, & have the same physical meaning relative in
the frames of reference o’ and «f, respectively, and set

U=1U<glges, U<e>=1U<p,&>llb=, U<p,g> =Tt p, eIk (6.1)

Note that the node 2z, may, in general, simultaneously occur in several cells. Despite
the fact that the number of components in this case is redundant, the structure (6.l) remains
highly convenient.

Since the construction § is symmetric, the operator B may be completely determined by the
system of algebraic equations

gé’c Ble,pyU<Lgy=V<e), Ble,g>=[B<p e, a8 Ipq=1 (6.2)

where B (p,e, q, g> are given square matrices of dimension n, X n,; columns corresponding to re-
dundant components may be assumed to be empty.

As we noted earlier, the basic 1somorphlsm should be used as the correspondence (4.1).
By formulas (4.3), we set

U(k‘v) " U(k\') <p> "P—h U(k\) <P> _ I) D(l\\) <p’ P> ""‘kv (6.3)
" ¢p, py = Uxwo <P, €

Let us consider the construction of the basis in the space L&V {p), formedby the subvectors
U (p). For this purpose, we assume that G* C G 1is the group of node 1z, i.e., the set of
elements g* e G that leave the node z, unchanged. Since this node must belong simultaneously
to all cells QFf (g GP), the following type of relations hold between the components of U:

"p ’
Z RE ( ")U(q,p,e)—z BE (@)U g, p g™ (t=1,2...,np) (6.4)
9=1 g=1
where hg™(g") and hy®’ (gF) are given certain scalar coefficients.

Using the relations (3.2) and the subvector U&v (p>, from (6.3) we obtain

[Tuv (€) X Hp ()] U <q) = [t (g") x Hy' (€)1 UXY <p> (6.5)

after elementary transformations of the equalities (6.4), written for the components of the
vectors Uiy (p=1,2,..., m).

Here H, (g’) and Hp (g°) are square matrices of order n,, compiled from the coefficients
hg® (g%yand Ry *’(g") (g, t=1,...,n,), while the symbol [ty (g) < H, (g)] denotes the tensor product
of the corresponding matrlces.

From (6.5), it follows that the subvectors UV (p> must satisfy the equations

(Dgw) (&) U(’l‘V) p> = 0 (6.6)
DE (g°) = [tuv (€) X Hyp ()] ~— [Ty (87) X Hy' (67)]
and, consequently, occur in the intersection of the null-spaces of the matrices QN g") x

(8 = G"). By the reverse reasoning, we may prove that the components of any vectors in this
intersection satisfies equations (6.4). Thus, the space L) (p> constitutes the intersection
of the null-spaces of the matrices @, (gf) (¢ = GF).
The foregoing allow us to, in fact, construct bases in the spaces L% (py, Lk and Lyy,.
Suppose that HAyyy is the dimension of the space L®*¥ {p>, and let the vectors E,0 Lpy(y = 1,
., Ryyy) form an orthonormalized basis in L&Y {p>. We introduce the vectors

k k .
EeLl™, Efelu, =12....Ripip=12,...,N)
determined by the equalities

ER) (@) = 63, EY (p>, EfRu<q, o> =EX<p,q> (g=1,2,...,N) (6.7
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where §,, is the Kronecker symbol. The systems compiled from such vectors

UER VR Yoar, (B )0 6.8)

constitutes an orthonormalized basis in the space L‘*» and an orthogonal basis in /iy, respect-
ively.

Let us show that the scalar product in the space Ly, which, unlike the oridinary scalar
product (U, V) is denoted by (U, V);, is given by the equality

(U, Ve = Mcl(U {g>, V <{>)] (6.9)
We will understand by Mga special functional on G (for finite groups, an averaging func-
tional) introduced previously /8/ and possessing the property
M6 [Tionp (8) Thavipon (8)] == Bk SuiBop Syt Micy (6.10)

In this scalar product, the norm of the vectors EK‘GH is equal to 1/mGv. It follows
from (6.9), (3.2), (6.7), (6.2) and (6.10) that

Mgy
1 ——— ’ kv
(BER, B)e = V!, T () (B <Py 00,8 B (pa 03, Ey™ <01, 1) (6.11)
EEG py, 0o=1

Now, using techniques of linear algebra we construct the matrix B, corresponding to
the operator BV is the basis adopted for space L&v), By (4.6), it must have the form

B = B <p, 0> llpq 1 (6.12)
BEY (p, gy = || mucy (BEG, Bkl [ 737, v

Using expressions (6.11), we finally obtain

BV <p, > = | (DEV <p, g E&V<qd,  EYY (p)) [l hvp; Fieva (6.13)
DEY (0> = 3, [T (@) X B (P4 0)) 6.14
Thus, the operator equation (4.5) reduces to the system of algebraic equations
(kv)X(kv) Y(kv) (6.15)
X =1 X% oy 5 XO <Py = X® < 2 I
whose matrix is determined by expression (6.13}. 1In this case
Y« <p, v>—<V“‘”> (P> By <p) (6.16)
Uy = 3 X <, 1 B (o
=1

Example. We construct the resolvent system of algebraic equations for the plane girder
of Fig.l, which possesses the symmetry group C(,. Rotatioens ¢, by angles ma/2 and reflec-
tions @, in the planes M, (m=0,1,2,3) are the symmetry elements. In Fig.l elementary cells
of the girder are denoted, the nodes in the cell Q¢ (coinciding with the nodes of the girder)
are enumerated, and the directions of the unit load forxces V, that occur in the set formed
by the representation T, indicated. The unit forces forming the load V. are shown by the
broken lines.

The matrix 7T, (g) has the form

ekl
—

Let us present necessary initial data, denoting by Ult,p, g
the motion of the node gp= 8¢ in the axial directionwith number
t from the frame of reference wf ., In the cell ¢, the number
of nodes N =2. All the components of the subvectors U<2, g> (g¥F¢)

and U <{8y,> (m =0,1,2,3) will be assumed to be redundant. With this
in mind, we set

i mn

| ¢ .
= 5= 5
; oS =51 sin —

| —s ¢

Tos (Cm) = s Tes (Bm) =
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a U a U ag a; 0 0O 0 0 00 ag —a; 00
0 a, 0 a —a; az 0 0 0 0 00 a; ag 00
Beyor=l, 0 ay 0] B@Co=] g _4 0o Belo=i_, o go|" B&lo=l o 4 00
0 a3 0 a a 0 00 0 —a 00 —ay 0 00

Here a;(i=1, 2,..., 8) are the corresponding rigidity characteristics of the girder. By

(6.3) and (6.1),
z, and 1z, respectively.
(6.4)

1 0
Hp (e) =n0 Il

Now, using (6.6), we find the matrix

1

_ . 0
D, (8,) = diag [0, 2,2,0) (p=1,2), O (@)=],
1

and construct the orthonormalized bases in the spaces L®) 1) and

space is the null-space of @,%9(8,), while

VO =1[1,0,0,1,0,0,0,0] and 6'= {e,8,} and G = Cy
The coefficient matrices compiled from the coupling
and necessary for subsequent computations are written as follows:

are the groups of the nodes
equations

cmrey=mre=|y _y|, mreo-]] g

- o

1
0
0
1

[ =

0

L% (25, Note that the first

the second is the intersection of the null-spaces

of the matrices ®,% (8,) and @,09(®,), so that we have

Ro =25 E;® 1> =1[1,0,0,0], E®<1y=0,0,0,1]
Ry = 1; E, 9 2> =[V7]2, 0,0, — V22

Moreover, it follows from (6.14) that
a; 0 0 2Za,
0 a, — 2a 0
{(05) _ 2 7
DY <1, L=\ — 2a, aq 0
2a, 0 0 a,

’

DY 2,1y =

2 0 0 —2a

0 2a; 2a4 0

0 2a5 2a 0
—2¢ 0 O 2a5

D0 4, 2> = diag [ag, ag, a4, a5), D, 9942, 2 = diag [as, a5, a3, 83}
Using expressions (6.13) and (6.16), we obtain the required system (6.15):

ay 2a,

2a,

as

2V2_a‘ —2ﬁa5

7. Plane problem for isotropic medium. Generalized periodic problems
problems in this class that have received the most comprehensive study.

a Ve
— agfY 2 (X9 =

1
1
0

are the
They have been solved

by the Kosmodamianskii method /9/ and the small parameter method /10/.

Fig.2

Let us show that the general technique
proposed in Sect.5 can be applied. Using
previous results /9/ for this technique,
the concentration of stresses in a medium
weakened by a regular series of circular
holes was computed for two cases of loading
by an internal pressure of intensity g :
(a) only the basic contour is loaded; (b)
all contours, other than the basic contour,
is loaded. Fig.2 depicts the pathwise
stress diagrams gg/g (the unit stress dia-
gram is given by the broken line). The
upper part of the Fig.l refers to case (a),
and the lower part, to case (b). Stress
diagrams located above (below) the « -axis
correspond to a value d = 0.4 R(d = R),with
R the radius of the hole and d the thick-
ness of the connecting strip between the
holes. Note the two qualitative effects:
there also exist values d, and d, such
that if d~<Idy and if only a single contour
is loaded, its stress concentration is less
that of a neighboring (unloaded) contour,
while when d <{ do' for the case of a single
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unloaded contour, the stress concentration on this contour will be greater than for the ordin-
ary periodic problem.

A numerical analysis of these effects is illustrated by the curves for the concentration
coefficient K in Fig.3. Curves I and 2 correspond to the basic contour and a neighboring con-
tour under the load condition (a). Curve 3 represents the difference between the concentration
coefficients of the stresses on the basic contour for an ordinary periodic problem and for
loading (b). According to Fig.3, d,=~0.8R and 4, = 0.4R.

M These methods of solving generalized periodic problems may
) \ be used for other symmetry groups. With this in mind, the small

; N, . : .

“ \ parameter method is guite obvious.
k Expressions for the complex potentials @y, (2) and  Yiyy (2)
/do‘

1
llt have been compiled /5/ for a fixed coordinate system. We write
7

— them in a new coordinate system with origin at the center of the
e main hole, which is obtained from the initial system by parallel
| transfer. By a, (r=1,2) and D, we will understand the complex
! numbers corresponding to the basic vector a, and the transport
vector.

Following the basic procedures of the previous method /10/,
we expand the functions @uwy (2) and Yw (z) in a series in powers
of the small parameter e = 1/a;, and set

|5
o)

0
02 04 0.6 08 d
]

oM™ (z) = 2 Ead)gﬂ) (z)’ ) ()= E 83\1/-;'1) (2)

s7=0 s=0

N

We substitute all these expansions in equation (4.7) and transform them in a series (s =
0, 1,...) of systems

K0P @)+ K0P 0) - YP0)=1"0 (p=12..,mp) (7.1)
Here
folf? (2) = f@ (1)

s—1 r §=2 T

RO=—K3 3 I~ K3 3 ¢ —p+ 0T8T +

r=0 p=0 r={ p=0

s—1 r

S 3 UEP o+ I} =12,

r=0 p=0

Mky
s 3) (ﬂp)
J E&J:q:) = 2 CP(— 1)Pir-p [7»5’&?1(11+:4)»q—p-11 (Tyry) + 7\5'2;‘1(|J+r+q—p— Asr ]
= Rmz_l Ot (A=0,%)
T
N N l* )

x(pn)u«-l) = lim Z 2 Tkvon (Tmmucm) e~impa

N—roo my, Ma=—N m=(
[1 4 j(Es — E5e™i™® — myey — magy — 1)] [e77% (myey + moes) + €3 (1 — e7m%)]
N n—1
x(on)(m) — lim Z Z Thyon (Tm‘mc @) gmimpa w

N m, me—=—Nm
1+ j (B2 — €€ — g — ma€y — 1)] [€7Im ey -+ Mges) 4 £g — £ge=ime]
£ = alll a l, £y = a,jl a l, g3 == D/l a l, o=2n/n

and C,? is the number of combinations of r elements taken p at a time, while the index j takes
the values 0 and 1, finally the asterisk following the summation sign indicates that terms
with subscripts m; = m, = m = 0 are absent.

A solution of the system (7.1) for a fixed value of s may be carried out by the
Muskhelishvili method /1/ and determines the s-th approximation of the required functions
@M (z) and YO (z).
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